3.257 \(\int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=145 \[ \frac {(A-5 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 B \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

2*B*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d+1/2*(A-B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*
sec(d*x+c))^(3/2)+1/4*(A-5*B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/
a^(3/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4019, 4023, 3808, 206, 3801, 215} \[ \frac {(A-5 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 B \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) + ((A - 5*B)*ArcTanh[(Sqrt[a]*Sqrt[
Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A - B)*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4019

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/
(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx &=\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {1}{2} a (A-B)+2 a B \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(A-5 B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}+\frac {B \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{a^2}\\ &=\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(A-5 B) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}-\frac {(2 B) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^2 d}\\ &=\frac {2 B \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {(A-5 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.86, size = 113, normalized size = 0.78 \[ \frac {\sqrt {\sec (c+d x)} \left ((A-B) \tan \left (\frac {1}{2} (c+d x)\right )+(A-5 B) \cos \left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+4 \sqrt {2} B \cos \left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{2 a d \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*((A - 5*B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2] + 4*Sqrt[2]*B*ArcTanh[Sqrt[2]*Sin[(c
 + d*x)/2]]*Cos[(c + d*x)/2] + (A - B)*Tan[(c + d*x)/2]))/(2*a*d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 601, normalized size = 4.14 \[ \left [-\frac {\sqrt {2} {\left ({\left (A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A - 5 \, B\right )} \cos \left (d x + c\right ) + A - 5 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 4 \, {\left (B \cos \left (d x + c\right )^{2} + 2 \, B \cos \left (d x + c\right ) + B\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left ({\left (A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A - 5 \, B\right )} \cos \left (d x + c\right ) + A - 5 \, B\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) - 2 \, {\left (A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 4 \, {\left (B \cos \left (d x + c\right )^{2} + 2 \, B \cos \left (d x + c\right ) + B\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(2)*((A - 5*B)*cos(d*x + c)^2 + 2*(A - 5*B)*cos(d*x + c) + A - 5*B)*sqrt(a)*log(-(a*cos(d*x + c)^2
+ 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c)
 - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*
x + c))*sin(d*x + c) - 4*(B*cos(d*x + c)^2 + 2*B*cos(d*x + c) + B)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x
 + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqr
t(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*
d), -1/4*(sqrt(2)*((A - 5*B)*cos(d*x + c)^2 + 2*(A - 5*B)*cos(d*x + c) + A - 5*B)*sqrt(-a)*arctan(sqrt(2)*sqrt
(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) - 2*(A - B)*sqrt((a*cos(d*x
+ c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 4*(B*cos(d*x + c)^2 + 2*B*cos(d*x + c) + B)*sqrt(-a)
*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 -
 a*cos(d*x + c) - 2*a)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 2.56, size = 313, normalized size = 2.16 \[ -\frac {\left (2 B \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sin \left (d x +c \right )-2 B \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sin \left (d x +c \right )+A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-5 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )+B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}}}{2 d \sin \left (d x +c \right )^{3} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/2/d*(2*B*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c))*2^(1/2))*sin(d*x+c)-2*B*2^(
1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c))*2^(1/2))*sin(d*x+c)+A*arctan(1/2*sin(d*x+c
)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-A*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)-5*B*arctan(1/2*sin(d*x+c)*(-2/(
1+cos(d*x+c)))^(1/2))*sin(d*x+c)+B*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+A*(-2/(1+cos(d*x+c)))^(1/2)-B*(-2/(1+c
os(d*x+c)))^(1/2))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*cos(d*x+c)^2*(1/cos(d*x+c))^(3/2)/sin(d
*x+c)^3/(-2/(1+cos(d*x+c)))^(1/2)/a^2

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________